日本語フィールド
著者:Handa, K題名:Reversible distributions of multi-allelic Gillespie-Sato diffusion models発表情報:ANNALES- INSTITUT HENRI POINCARE PROBABILITIES ET STATISTIQUES 巻: 40 号: 5 ページ: 569-597キーワード:概要:集団遺伝学でよく知られるWright-Fisher拡散モデルに対して非線形な摂動を施した
Gillespie-Sato拡散モデルについて調べ,その平衡状態(可逆定常分布)の具体形を求めた.このモデルはJ.H. Gillespieが1974年に1次元のモデルとして導入し,K. Satoが1978年に多次元化を構成した.その後,T. Shigaによる一連の研究があったが,平衡状態の具体形を与えた結果としては,これが初めてである.抄録:We consider multi-allelic Gillespie-Sato diffusion models in population genetics. The case where they have reversible distributions is completely determined in terms of mutation rates and selection intensity. In such cases
we give an explicit expression of the reversible distributions, which turn out to be mutually absolutely continuous with respect to some Dirichlet distributions.英語フィールド
Author:Handa, KTitle:Reversible distributions of multi-allelic Gillespie-Sato diffusion modelsAnnouncement information:ANNALES- INSTITUT HENRI POINCARE PROBABILITIES ET STATISTIQUES Vol: 40 Issue: 5 Page: 569-597An abstract:We consider multi-allelic Gillespie-Sato diffusion models in population genetics. The case where they have reversible distributions is completely determined in terms of mutation rates and selection intensity. In such cases
we give an explicit expression of the reversible distributions, which turn out to be mutually absolutely continuous with respect to some Dirichlet distributions.