日本語フィールド
著者:Masaki Horitani, Risa Yamada, Kanami Taroura, Akari Maeda, Toyoaki Anai, Satoshi Watanabe題名:Identification of Genes Responsible for the Synthesis of Glycitein Isoflavones in Soybean Seeds発表情報:Plantsキーワード:概要:抄録:Soybean (Glycine max (L.) Merrill) isoflavones are among the most important secondary metabolites, with functional benefits for human health. Soybeans accumulate three aglycone forms of isoflavones: genistein, daidzein, and glycitein. Soybean landrace Kumachi-1 does not accumulate malonylglycitin at all. Gene structure analysis indicated that Glyma.11G108300 (F6H4) of Kumachi-1 has a 3.8-kbp insertion, resulting in a truncated flavonoid 6-hydroxylase (F6H) sequence compared to the wild-type sequence in Fukuyutaka. Mapping experiments using a mutant line (MUT1246) with a phenotype similar to that of Kumachi-1, with a single-nucleotide polymorphism (SNP) in F6H4, revealed co-segregation of this mutation and the absence of glycitein isoflavones. We also identified a mutant line (K01) that exhibited a change in the HPLC retention time of glycitein isoflavones, accumulating glycoside and malonylglycoside forms of 6-hydroxydaidzein. K01 contains an SNP that produces a premature stop codon in Glyma.01G004200 (IOMT3), a novel soybean isoflavone O-methyltransferase (IOMT) gene. We further analyzed transgenic hairy roots of soybeans expressing Glyma.11G108300 (F6H4) and Glyma.01G004200 (IOMT3). Those overexpressing F6H4 accumulated malonylglycoside forms of 6-hydroxydaidzein (M_6HD), and co-expression of F6H4 and IOMT3 increased the level of malonylglycitin but not of M_6HD. These results indicate that F6H4 and IOMT3 are responsible for glycitein biosynthesis in soybean seed hypocotyl.英語フィールド
Author:Masaki Horitani, Risa Yamada, Kanami Taroura, Akari Maeda, Toyoaki Anai, Satoshi WatanabeTitle:Identification of Genes Responsible for the Synthesis of Glycitein Isoflavones in Soybean SeedsAnnouncement information:PlantsAn abstract:Soybean (Glycine max (L.) Merrill) isoflavones are among the most important secondary metabolites, with functional benefits for human health. Soybeans accumulate three aglycone forms of isoflavones: genistein, daidzein, and glycitein. Soybean landrace Kumachi-1 does not accumulate malonylglycitin at all. Gene structure analysis indicated that Glyma.11G108300 (F6H4) of Kumachi-1 has a 3.8-kbp insertion, resulting in a truncated flavonoid 6-hydroxylase (F6H) sequence compared to the wild-type sequence in Fukuyutaka. Mapping experiments using a mutant line (MUT1246) with a phenotype similar to that of Kumachi-1, with a single-nucleotide polymorphism (SNP) in F6H4, revealed co-segregation of this mutation and the absence of glycitein isoflavones. We also identified a mutant line (K01) that exhibited a change in the HPLC retention time of glycitein isoflavones, accumulating glycoside and malonylglycoside forms of 6-hydroxydaidzein. K01 contains an SNP that produces a premature stop codon in Glyma.01G004200 (IOMT3), a novel soybean isoflavone O-methyltransferase (IOMT) gene. We further analyzed transgenic hairy roots of soybeans expressing Glyma.11G108300 (F6H4) and Glyma.01G004200 (IOMT3). Those overexpressing F6H4 accumulated malonylglycoside forms of 6-hydroxydaidzein (M_6HD), and co-expression of F6H4 and IOMT3 increased the level of malonylglycitin but not of M_6HD. These results indicate that F6H4 and IOMT3 are responsible for glycitein biosynthesis in soybean seed hypocotyl.