日本語フィールド
著者:Okada T, Ihara H, Ito R, Ikeda Y題名:Molecular cloning and functional expression of Lewis type α1,3/α1,4-fucosyltransferase cDNAs from Mangifera indica L.発表情報:Phytochemistry 巻: 144 ページ: 98-105キーワード:概要:抄録:In higher plants, complex type N-glycans contain characteristic carbohydrate moieties that are not found in mammals. In particular, the attachment of the Lewis a (Lea) epitope is currently the only known outer chain elongation that is present in plant N-glycans. Such a modification is of great interest in terms of the biological function of complex type N-glycans in plant species. However, little is known regarding the exact molecular basis underlying their Lea expression. In the present study, we cloned two novel lewis type fucosyltransferases (MiFUT13) from mango fruit, Mangifera indica L., heterologously expressed the proteins and structurally and functionally characterized them. Using an HPLC-based assay, we demonstrated that the recombinant MiFUT13 proteins mediate the α1,4-fucosylation of acceptor tetrasaccharides with a strict preference for type I-based structure to type II. The results and other findings suggest that MiFUT13s are involved in the biosynthesis of Lea containing glycoconjugates in mango fruits.英語フィールド
Author:Okada T, Ihara H, Ito R, Ikeda YTitle:Molecular cloning and functional expression of Lewis type α1,3/α1,4-fucosyltransferase cDNAs from Mangifera indica L.Announcement information:Phytochemistry Vol: 144 Page: 98-105An abstract:In higher plants, complex type N-glycans contain characteristic carbohydrate moieties that are not found in mammals. In particular, the attachment of the Lewis a (Lea) epitope is currently the only known outer chain elongation that is present in plant N-glycans. Such a modification is of great interest in terms of the biological function of complex type N-glycans in plant species. However, little is known regarding the exact molecular basis underlying their Lea expression. In the present study, we cloned two novel lewis type fucosyltransferases (MiFUT13) from mango fruit, Mangifera indica L., heterologously expressed the proteins and structurally and functionally characterized them. Using an HPLC-based assay, we demonstrated that the recombinant MiFUT13 proteins mediate the α1,4-fucosylation of acceptor tetrasaccharides with a strict preference for type I-based structure to type II. The results and other findings suggest that MiFUT13s are involved in the biosynthesis of Lea containing glycoconjugates in mango fruits.