MF研究者総覧

教員活動データベース

Unconditional well-posedness of fifth order KdV equations with periodic boundary condition

発表形態:
原著論文
主要業績:
主要業績
単著・共著:
単著
発表年月:
2018年00月
DOI:
会議属性:
指定なし
査読:
有り
リンク情報:

日本語フィールド

著者:
題名:
Unconditional well-posedness of fifth order KdV equations with periodic boundary condition
発表情報:
RIMS Kokyuroku, Bessatsu 巻: B70 (2018) ページ: 105-129
キーワード:
KdV hierarchy, low regularity, Cauchy problem, well-posedness, uncodnitional uniqueness
概要:
We study the well-posedness of the Cauchy problem of the fifth order KdV type equations on the torus. We show the local well-posedness and unconditional uniqueness at low regularity.The main idea of the proof is using the conserved quantities to cancel the resonant parts with a loss of derivatives and applying the normal form reduction to the non-resonant parts to recover derivatives.
抄録:

英語フィールド

Author:
Title:
Unconditional well-posedness of fifth order KdV equations with periodic boundary condition
Announcement information:
RIMS Kokyuroku, Bessatsu Vol: B70 (2018) Page: 105-129
Keyword:
KdV hierarchy, low regularity, Cauchy problem, well-posedness, uncodnitional uniqueness
An abstract:
We study the well-posedness of the Cauchy problem of the fifth order KdV type equations on the torus. We show the local well-posedness and unconditional uniqueness at low regularity.The main idea of the proof is using the conserved quantities to cancel the resonant parts with a loss of derivatives and applying the normal form reduction to the non-resonant parts to recover derivatives.


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.