MF研究者総覧

教員活動データベース

The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes.

発表形態:
原著論文
主要業績:
その他
単著・共著:
共著
発表年月:
2012年
DOI:
会議属性:
指定なし
査読:
有り
リンク情報:

日本語フィールド

著者:
Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A, Katayose Y, Ishimoto M, Harada K
題名:
The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes.
発表情報:
Plant Molecular Biology 巻: 78 号: 3 ページ: 301-309
キーワード:
概要:
抄録:
β-Conglycinin, a major seed protein in soybean, is composed of α, α′, and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α′, and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, ‘QT2’, lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar ‘Fukuyutaka’, ‘QY7-25’, (its near-isogenic line carrying the Scg-1 gene), and the F2 population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.

英語フィールド

Author:
Tsubokura Y, Hajika M, Kanamori H, Xia Z, Watanabe S, Kaga A, Katayose Y, Ishimoto M, Harada K
Title:
The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes.
Announcement information:
Plant Molecular Biology Vol: 78 Issue: 3 Page: 301-309
An abstract:
β-Conglycinin, a major seed protein in soybean, is composed of α, α′, and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α′, and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, ‘QT2’, lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar ‘Fukuyutaka’, ‘QY7-25’, (its near-isogenic line carrying the Scg-1 gene), and the F2 population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.