日本語フィールド
著者:*Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda S題名:A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats発表情報:Microsurgery. 巻: 40 号: 2 ページ: 207-216キーワード:概要:Introduction: A Bio 3D printed nerve conduit was reported to promote nerve regeneration in a 5 mm nerve gap model. The purpose of this study was to fabricate Bio 3D nerve conduits suitable for a 10 mm nerve gap and to evaluate their capacity for nerve regeneration in a rat sciatic nerve defect model.
Materials and methods: Eighteen F344 rats with immune deficiency (9-10 weeks old; weight, 200-250 g) were divided into three groups: a Bio 3D nerve conduit group (Bio 3D, n = 6), a nerve graft group (NG, n = 6), and a silicon tube group (ST, n = 6). A 12-mm Bio 3D nerve conduit or silicon tube was transplanted into the 10-mm defect of the right sciatic nerve. In the nerve graft group, reverse autografting was performed with an excised 10-mm nerve segment. Assessments were performed at 8 weeks after the surgery.
Results: In the region distal to the suture site, the number of myelinated axons in the Bio 3D group were significantly larger compared with the silicon group (2,548 vs. 950, p < .05). The myelinated axon diameter (MAD) and the myelin thickness (MT) of the regenerated axons in the Bio 3D group were significantly larger compared with those of the ST group (MAD: 3.09 vs. 2.36 μm; p < .01; MT: 0.59 vs. 0.40 μm, p < .01).
Conclusions: This study indicates that a Bio 3D nerve conduit can enhance peripheral nerve regeneration even in a 10 mm nerve defect model.抄録:英語フィールド
Author:*Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda STitle:A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the ratsAnnouncement information:Microsurgery. Vol: 40 Issue: 2 Page: 207-216An abstract:Introduction: A Bio 3D printed nerve conduit was reported to promote nerve regeneration in a 5 mm nerve gap model. The purpose of this study was to fabricate Bio 3D nerve conduits suitable for a 10 mm nerve gap and to evaluate their capacity for nerve regeneration in a rat sciatic nerve defect model.
Materials and methods: Eighteen F344 rats with immune deficiency (9-10 weeks old; weight, 200-250 g) were divided into three groups: a Bio 3D nerve conduit group (Bio 3D, n = 6), a nerve graft group (NG, n = 6), and a silicon tube group (ST, n = 6). A 12-mm Bio 3D nerve conduit or silicon tube was transplanted into the 10-mm defect of the right sciatic nerve. In the nerve graft group, reverse autografting was performed with an excised 10-mm nerve segment. Assessments were performed at 8 weeks after the surgery.
Results: In the region distal to the suture site, the number of myelinated axons in the Bio 3D group were significantly larger compared with the silicon group (2,548 vs. 950, p < .05). The myelinated axon diameter (MAD) and the myelin thickness (MT) of the regenerated axons in the Bio 3D group were significantly larger compared with those of the ST group (MAD: 3.09 vs. 2.36 μm; p < .01; MT: 0.59 vs. 0.40 μm, p < .01).
Conclusions: This study indicates that a Bio 3D nerve conduit can enhance peripheral nerve regeneration even in a 10 mm nerve defect model.