MF研究者総覧

教員活動データベース

Recent developments in the magnetic study of the deformed pyrochlore lattice M2(OH)3X (M = 3d magnetic ions, X = Cl, Br) - exotic magnetic order in Ni2(OH)3Cl and controlled spin-spin interactions in Co2(OH)3Cl1-xBrx and (Co1-xFex)2(OH)3Cl

発表形態:
原著論文
主要業績:
主要業績
単著・共著:
共著
発表年月:
2009年
DOI:
会議属性:
指定なし
査読:
有り
リンク情報:

日本語フィールド

著者:
X.G. Zheng, M. Hagihala, M. Fujihala, T. Kawae
題名:
Recent developments in the magnetic study of the deformed pyrochlore lattice M2(OH)3X (M = 3d magnetic ions, X = Cl, Br) - exotic magnetic order in Ni2(OH)3Cl and controlled spin-spin interactions in Co2(OH)3Cl1-xBrx and (Co1-xFex)2(OH)3Cl
発表情報:
Journal of Physics: Conference Series 145, 012034/1-8 (2009) 巻: 145 ページ: 012034-1-012034-8
キーワード:
Geometric frustration, quantum magnetism, spin fluction,
概要:
Abstract. Following the discovery of frustrated magnetism in deformed pyrochlore lattice Cu2(OH)3Cl and Co2(OH)3Cl we have extensively investigated the material series in the chemical formula of M2(OH)3X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I. In atacamite-structure Ni2(OH)3Cl, strong geometric frustration and an exotic antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the SR method can’t “see” this order, instead, the detected local field behaved quite like a dynamically fluctuating one. For the system of Co2(OH)3Cl, the magnetic state is very sensitive to both the anion and cation substitution. While Co2(OH)3Cl behaves like a zero-field kagomé ice ferromagnet, a completely substituted version of Co2(OH)3Br becomes antiferromagnetic although there is little difference in the crystal structure. The antiferromagnetic Co2(OH)3Br showed complicated magnetic transitions. Meanwhile, partially substituted Co2(OH)3Cl1-xBrx transforms from ferromagnetic to antiferromagnetic with increasing the x ratio. The results suggest that the interaction on the kagome-lattice plane is antiferromagnetic while that on the triangular lattice plane is ferromagnetic. For the substituted series (Co1-xFex)2(OH)3Cl a spin glass state is observed.
抄録:
Abstract. Following the discovery of frustrated magnetism in deformed pyrochlore lattice Cu2(OH)3Cl and Co2(OH)3Cl we have extensively investigated the material series in the chemical formula of M2(OH)3X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I. In atacamite-structure Ni2(OH)3Cl, strong geometric frustration and an exotic antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the SR method can’t “see” this order, instead, the detected local field behaved quite like a dynamically fluctuating one. For the system of Co2(OH)3Cl, the magnetic state is very sensitive to both the anion and cation substitution. While Co2(OH)3Cl behaves like a zero-field kagomé ice ferromagnet, a completely substituted version of Co2(OH)3Br becomes antiferromagnetic although there is little difference in the crystal structure. The antiferromagnetic Co2(OH)3Br showed complicated magnetic transitions. Meanwhile, partially substituted Co2(OH)3Cl1-xBrx transforms from ferromagnetic to antiferromagnetic with increasing the x ratio. The results suggest that the interaction on the kagome-lattice plane is antiferromagnetic while that on the triangular lattice plane is ferromagnetic. For the substituted series (Co1-xFex)2(OH)3Cl a spin glass state is observed.

英語フィールド

Author:
X.G. Zheng, M. Hagihala, M. Fujihala, T. Kawae
Title:
Recent developments in the magnetic study of the deformed pyrochlore lattice M2(OH)3X (M = 3d magnetic ions, X = Cl, Br) - exotic magnetic order in Ni2(OH)3Cl and controlled spin-spin interactions in Co2(OH)3Cl1-xBrx and (Co1-xFex)2(OH)3Cl
Announcement information:
Journal of Physics: Conference Series 145, 012034/1-8 (2009) Vol: 145 Page: 012034-1-012034-8
Keyword:
Geometric frustration, quantum magnetism, spin fluction,
An abstract:
Abstract. Following the discovery of frustrated magnetism in deformed pyrochlore lattice Cu2(OH)3Cl and Co2(OH)3Cl we have extensively investigated the material series in the chemical formula of M2(OH)3X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I. In atacamite-structure Ni2(OH)3Cl, strong geometric frustration and an exotic antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the SR method can’t “see” this order, instead, the detected local field behaved quite like a dynamically fluctuating one. For the system of Co2(OH)3Cl, the magnetic state is very sensitive to both the anion and cation substitution. While Co2(OH)3Cl behaves like a zero-field kagomé ice ferromagnet, a completely substituted version of Co2(OH)3Br becomes antiferromagnetic although there is little difference in the crystal structure. The antiferromagnetic Co2(OH)3Br showed complicated magnetic transitions. Meanwhile, partially substituted Co2(OH)3Cl1-xBrx transforms from ferromagnetic to antiferromagnetic with increasing the x ratio. The results suggest that the interaction on the kagome-lattice plane is antiferromagnetic while that on the triangular lattice plane is ferromagnetic. For the substituted series (Co1-xFex)2(OH)3Cl a spin glass state is observed.
An abstract:
Abstract. Following the discovery of frustrated magnetism in deformed pyrochlore lattice Cu2(OH)3Cl and Co2(OH)3Cl we have extensively investigated the material series in the chemical formula of M2(OH)3X, with M = Cu, Co, Ni, Fe, Mn, and X = Cl, Br, or I. In atacamite-structure Ni2(OH)3Cl, strong geometric frustration and an exotic antiferromagnetic transition below 5 K was found. While neutron diffraction witnessed unambiguously an antiferromagnetic long-range order, the SR method can’t “see” this order, instead, the detected local field behaved quite like a dynamically fluctuating one. For the system of Co2(OH)3Cl, the magnetic state is very sensitive to both the anion and cation substitution. While Co2(OH)3Cl behaves like a zero-field kagomé ice ferromagnet, a completely substituted version of Co2(OH)3Br becomes antiferromagnetic although there is little difference in the crystal structure. The antiferromagnetic Co2(OH)3Br showed complicated magnetic transitions. Meanwhile, partially substituted Co2(OH)3Cl1-xBrx transforms from ferromagnetic to antiferromagnetic with increasing the x ratio. The results suggest that the interaction on the kagome-lattice plane is antiferromagnetic while that on the triangular lattice plane is ferromagnetic. For the substituted series (Co1-xFex)2(OH)3Cl a spin glass state is observed.


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.