MF研究者総覧

教員活動データベース

2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study

発表形態:
原著論文
主要業績:
主要業績
単著・共著:
共著
発表年月:
2020年10月
DOI:
10.1155/2020/5639651
会議属性:
指定なし
査読:
有り
リンク情報:

日本語フィールド

著者:
*Taizo Kaneko, Taku Saito, Takeo Shobuike, Hiroshi Miyamoto, Junpei Matsuda, Kyoko Fukazawa, Kazuhiko Ishihara, Sakae Tanaka , and Toru Moro
題名:
2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study
発表情報:
Biomed Res Int 巻: 2020 ページ: 5639651
キーワード:
概要:
Initial bacterial adhesion to medical devices and subsequent biofilm formation are known as the leading causes of surgical site infection (SSI). Therefore, inhibition of bacterial adhesion and biofilm formation on the surface of medical devices can reduce the risk of SSIs. In this study, a highly hydrophilic, antibiofouling surface was prepared by coating the bioabsorbable suture surface with poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate) (PMB). The PMB-coated and noncoated sutures exhibited similar mechanical strength and surface morphology. The effectiveness of the PMB coating on the suture to suppress adhesion and biofilm formation of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus was investigated both in vitro and in vivo. The bacterial adhesion test revealed that PMB coating significantly reduced the number of adherent bacteria, with no difference in the number of planktonic bacteria. Moreover, fluorescence microscopy and scanning electron microscopy observations of adherent bacteria on the suture surface after contact with bacterial suspension confirmed PMB coating-mediated inhibition of biofilm formation. Additionally, we found that the PMB-coated sutures exhibited significant antibiofouling effects in vivo. In conclusion, PMB-coated sutures demonstrated bacteriostatic effects associated with a highly hydrophilic, antibiofouling surface and inhibited bacterial adhesion and biofilm formation. Therefore, PMB-coated sutures could be a new alternative to reduce the risk of SSIs.
抄録:

英語フィールド

Author:
*Taizo Kaneko, Taku Saito, Takeo Shobuike, Hiroshi Miyamoto, Junpei Matsuda, Kyoko Fukazawa, Kazuhiko Ishihara, Sakae Tanaka , and Toru Moro
Title:
2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study
Announcement information:
Biomed Res Int Vol: 2020 Page: 5639651
An abstract:
Initial bacterial adhesion to medical devices and subsequent biofilm formation are known as the leading causes of surgical site infection (SSI). Therefore, inhibition of bacterial adhesion and biofilm formation on the surface of medical devices can reduce the risk of SSIs. In this study, a highly hydrophilic, antibiofouling surface was prepared by coating the bioabsorbable suture surface with poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate) (PMB). The PMB-coated and noncoated sutures exhibited similar mechanical strength and surface morphology. The effectiveness of the PMB coating on the suture to suppress adhesion and biofilm formation of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus was investigated both in vitro and in vivo. The bacterial adhesion test revealed that PMB coating significantly reduced the number of adherent bacteria, with no difference in the number of planktonic bacteria. Moreover, fluorescence microscopy and scanning electron microscopy observations of adherent bacteria on the suture surface after contact with bacterial suspension confirmed PMB coating-mediated inhibition of biofilm formation. Additionally, we found that the PMB-coated sutures exhibited significant antibiofouling effects in vivo. In conclusion, PMB-coated sutures demonstrated bacteriostatic effects associated with a highly hydrophilic, antibiofouling surface and inhibited bacterial adhesion and biofilm formation. Therefore, PMB-coated sutures could be a new alternative to reduce the risk of SSIs.


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.